
Concurrent Caching in Web Servers
Using Go
A Technical Description

Gophers, The Mascots of Golang

Yiping Su
UWP 102E

Table of Contents

1.0 Introduction 3

2.0 Glossary 4

3.0 Components of Concurrency and Servers 5
3.1 Concurrency 5
3.2 Cache 6

3.2.1 Web Cache 6
3.2.2 Server Cache 6

3.3 Web Server 6
3.3.1 Hardware 6
3.3.2 Software 7

4.0 Design and Process 8
4.1 Concurrent Process in Go 9
4.2 Caching Process 10
4.3 Retrieving Top Stories 11
4.4 Retrieving Stories Concurrently 12

5.0 References 14

2

1.0 Introduction

This document is an overview of concurrent caching in web servers written in Golang

(Go), a programming language developed by Google. Golang is a compiled language

with C-like syntax. It is designed to have baseline support for concurrency,

object-oriented programming, functional programming, and imperative programming.

Its speed and efficiency has made it a valuable language in backend design because

each program can be scaled for thousands of processes.

This document will go over the details of concurrent server caching in conjunction with

a code example from Jon Calhoun in Go. The code example will explain how to retrieve

top stories concurrently from the Hacker News API and store the data in the server

cache.

3

2.0 Glossary

API - Application
Programming Interface

A list or description of operations a programmer can use

Array An array is a data structure which stores items of the same
type in sequential order

Backend The data access layer, physical infrastructure, or hardware
portion of a software program

Call(s) A function call is when you activate another function to
complete a process

Data Structure(s) A data structure is a method to organize data for effective
usage

Function(s) A function is a block of reusable code that performs a single or
related action

Functional Programming A type of programming paradigm which treats computations as
a method of mathematical evaluation

HTTP Request(s) A protocol a web browser uses to request data from a server

Imperative Programming A type of programming paradigm which uses statements
(instructions) to change a program’s state

Method(s) A method is a function which is associated with an object

Object-Oriented
Programming

A type of programming paradigm which defines data and
functions as objects

Parallel Computing A type of computation in which many processes are carried out
at the same time

Slice A slice is a dynamic array which can grow in size when the
initial size limit has been reached

URL(s) Web addresses

4

3.0 Components of Concurrency and Servers
Concurrency in web servers requires three main parts: concurrent method, server

cache, and web server. The concurrent method and server cache are both used in the

software portion of the web server. This section will go over the description and

application of each sub-process.

3.1 Concurrency

Concurrency is a parallel computing process in which a program, algorithm, or CPU

executes multiple processes at the same time. The CPU is the central processing unit of

the device; it executes the instructions of a given program. Golang supports

concurrency through the use of goroutines. Goroutines are functions or methods which

run at the same time as other functions and methods. Concurrent functions and

methods are prefixed with the keyword go. Goroutines are lightweight and only take a

few kB in size, thus, a Go application can run thousands of goroutines at the same time.

Figure 1

5

3.2 Cache

A cache is a software or hardware component which temporarily stores information so

requests for the data can be retrieved faster.

3.2.1 Web Cache

A web cache is a temporary storage located on a user’s web browser. It usually stores

webpage data such as images, static HTML files, and other media files.

3.2.2 Server Cache

A server cache is a temporary storage located on a web server. Server caches are

usually directly inaccessible to users. It usually stores temporary user data and data

retrieved from backend processes.

3.3 Web Server

A web server is either a software, hardware, or both software and hardware component

dedicated to sending and displaying data of web pages to users.

3.3.1 Hardware

The hardware portion of a web server is a physical computer which stores the data of a

website’s component files. Some example component files include HTML pages, CSS

stylesheets, images, and JavaScript files.

6

3.3.2 Software

The software portion of a web server controls how the user accesses hosted files from

the physical server. A software server is able to understand HTTP requests and URLs.

7

4.0 Design and Process

A concurrent web caching system is designed to reduce user wait time while a web

application retrieves latest information from other data sources and updates it to the

user’s page view. The web server contains a timer which notifies another server

component to update the server cache every ten minutes. The new data replaces the

old data in the server cache and is displayed to the user after the next browser refresh.

The data is gathered from other sources concurrently which speeds up retrieval time,

especially when the amount of data scales exponentially higher. Figure 2 shows the

graphical overview of the entire process.

Figure 2

8

4.1 Concurrent Process in Go

Web servers written in Go are able to run concurrent processes using goroutines. As

stated in the design overview, the data is gathered concurrently. The concurrent

process is demonstrated below in figure 3.

Figure 3

Each sub-process will be explained in detail in the following sections. From this point

on, function names will be italicized, and data structure objects will be bolded.

9

4.2 Caching Process

The caching process starts when the user visits the webpage. The server will call the

function, stories, to determine what data to show the user. If the cache is populated

and the server timer has not run out, stories will provide the existing cache. If not,

stories will transfer the work to another function that retrieves the updated stories list

and reset the expiration timer.

Figure 4, Jon Calhoun

Figure 1 shows the main overview of the concurrent process through the stories

function. The cache on our server is made up of 5 components: total number of data to

be shown (numStories), the cache as a data structure (cache), expiration time

10

(expiration), duration of time to wait before retrieving new data (duration), and a

mutual exclusion object which prevents concurrent processes from accessing a

particular resource (mutex).

Lines 84 and 85 stops any other processes from accessing the storyCache until the

current process is finished. Lines 87 to 93 tells the server to update the cache if the

expiration time is up, otherwise, continue using the cache stored in the server. Lines 94

to 96 reconfigures the new expiration time if the cache is newly updated and replaces

the outdated data with the new to the server cache.

4.3 Retrieving Top Stories

Figure 5, Jon Calhoun

Figure 2 shows how getTopStories builds the top story list. Lines 122 to 126 creates an

object which retrieves the top 400 news links from Hacker News through the site’s API.

11

Lines 127 to 134 creates a slice that holds the amount of top stories requested and

stores the news article links inside it. All the concurrent filtering and sorting occur in

getStories which is explained in the next section. After the list is built, getTopStories will

return the information back to the function that called it so it is eventually displayed to

the user.

4.4 Retrieving Stories Concurrently

Since the retrieval of large amounts of data can increase computation duration sharply,

data retrieval is implemented concurrently. This process is shown at the bottom in

figure 6.

getStories is a function which takes data from the API client and returns a data

structure which contains the top N items the user specifies. Lines 138 to 142 define the

resulting data structure to be made of three components: an index to track the item’s

position in the list, the item itself, and an error term to store errors if there were a

problem extracting the item.

Lines 143 to 153 is the main concurrent process which starts multiple goroutines to find

a specific record in the data which contains the same ID as the one requested. It is

important to note that the function in lines 145 to 152 is completed using multiple

goroutine threads. This causes the whole process to be faster because whichever

process is finished first will be recorded before the others.

12

Lines 154 to 157 is where all the results are stored into a slice of results. Lines 158 to

160 sorts the items in the array since concurrency guarantees that an element later in

the list can be found before its previous element. Lines 162 to 171 checks if every

result in the slice is valid. If it is a valid item, it will be kept in the final stories slice.

This slice is then returned to the stories function where the data is ready to be

displayed to the user.

Figure 6, Jon Calhoun

13

5.0 References

(n.d.). Retrieved from https://gobyexample.com/channels

Calhoun, J. (n.d.). Courses. Retrieved from https://www.calhoun.io/courses

Calhoun, J. (n.d.). Gophercises. Retrieved from https://gophercises.com/

Ramanathan, N. (2018, July 23). Understanding Concurrency in Golang. Retrieved from

https://golangbot.com/concurrency/

14

https://gobyexample.com/channels
https://www.calhoun.io/courses
https://gophercises.com/
https://golangbot.com/concurrency/

